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A computational thermo-mechanical model has been developed to simulate the continuous casting of 
shaped sections, such as used for thin steel slabs.  A general form of the transient heat equation including 
latent-heat from phase transformations such as solidification and other temperature-dependent properties 
is solved numerically for the temperature field history. The resulting thermal stresses are solved by 
integrating the highly nonlinear thermo-elastic-viscoplastic contitutive equations using a two-level method. 
The procedure has been implemented into Abaqus, (Abaqus Inc., 2005) using a user-defined subroutine 
(UMAT) to integrate the constitutive equations at the local level (Koric, 2006). The model is validated both 
with a semi-analytical solution from Weiner and Boley (Weiner, 1963) as well as with an in-house finite 
element code CON2D (Li, 2004, Zhu, 1993) specialized in thermo-mechanical modeling of continuous 
casting. The model is applied to simulate a 3D segment of the solidifying steel shell as it moves down 
through  a thin slab caster with a funnel mold, known for its complex geometry, using realistic operating 
conditions and temperature-dependant properties. It has provided valuable new insights into the complex 
dynamic 3D mechanical state of stress experienced by the solidifying shell due to the funnel geometry. 
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1. Introduction and Previous Work 
 
Many manufacturing and fabrication processes such as foundry shape casting, continuous casting and 
welding have common solidification phenomena. Probably one of the most important and complex among 
them is continuous casting. In fact most of the steel made today is produced through continuous casting.  
Even though the quality of the continuous casting is constantly improving, there is still a significant amount 
of work needed to minimize the amount of defects and to maximize the productivity. Some of the more 
important issues that influence the productivity and the quality of steel produced by the continuous casting 
process, are: uneven shell growth that influences the size of interfacial gap and the gap heat flow, leading to 
locally hot and thin parts of shell which can be another cause of longitudinal cracks and breakouts and 
transverse strains due to ferrostatic pressure from the liquid phase applied to a newly solidified shell can 
cause longitudinal cracks and breakouts. 
Most of these phenomena occur during the early stages of solidification in the mold. Accurate 
determination of temperature, deformation and stress distributions during this time is important for correct 
prediction of surface shape and cracking problems in processes such as the continuous casting of steel.   
The high cost of plant experiments under the harsh operating steel plant conditions makes it appropriate to 
use all available methods in simulating, optimizing, and designing this process. Even though physical 
modeling (experiment) of initial solidification has been conducted (Mizukama, 1999), the complexity of 
this process and phenomena that governs it make it difficult to model.  
At the same time the increasing power of computers and development of numerical methods in last 25 
years has helped researchers to better understand the governing principles of various material processing 
operations. The continuous casting process is not exception, and it has been subjected to more numerical 
models than any other process. However, it is a challenging task too, and there is large number of 
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computational difficulties encountered with numerical modeling of thermo-mechanical behavior of the 
shell in continuous casting.  
In 1963, Weiner and Boley (Weiner, 1996) derived a semi-analytical solution for the thermal stresses 
arising during the solidification of a semi infinite plate. Although that work oversimplifies the complex 
physical phenomena of solidification, it has become a useful benchmark problem for the verification of 
numerical models (Zhu, 1993, Li, 2004, Koric, 2006). The constitutive models used in previous work to 
investigate thermal stresses during continuous casting first adopted simple elastic-plastic laws (Weiner 
1963, Grill, 1976, Wimmer, 1996).  Later, separate creep laws were added (Rammerstrofer, 1979, 
Kristiansson, 1984). With the rapid advance of computer hardware, more computationally challenging 
elastic-viscoplastic models have been used (Zhu 1993, Boehmer 1998, Farup, 2000, Li, 2004, Risso, 2006, 
and Koric, 2006) which treat the phenomena of creep and plasticity together since only the combined effect 
is measurable. While Langrangian description of this process with fixed mesh is mostly adopted due to its 
easy implementation, an alternative mechanical model based on Eularian-Langrangian description has been 
proposed lately (Risso 2006). Similarly, the integration of viscoplastic laws ranges from easy-to-implement 
explicit methods (Morgan, 1978, Lewis, 1996), to robust but complex implicitly based algorithms (Zhu, 
1993, Li, 2004, Koric, 2006). 
It is a considerable challenge to implement the unified approach of these previous in-house models into a 
full scale FE analysis, and including other important phenomena such as contact.  Such analysis would 
enable correct reproduction of the true 3D mechanical state in casting processes with complex geometry or 
with complex loading conditions.  On the other hand, the easy-to-use commercial finite-element packages 
are now fully capable of handling 2D and 3D problems, having rich element libraries, fully imbedded pre 
and post processing capabilities, advanced modeling features such as contact algorithms, and can take full 
advantage of parallel-computing capabilities.  
The work of Koric et al (Koric, 2006, Koric, 2007) implemented a robust local viscoplastic integration 
schemes from an in-house code CON2D (Zhu, 1993, Li 2004) into the commercial finite element package 
Abaqus via its user defined material subroutine UMAT including the special treatment of liquid/mushy 
zone. This opened the door for or realistic computational modeling of complex solidification processes with 
Abaqus. 
 

2. Thermal Governing Equations  
 
By using the uncoupled procedure (Abaqus Inc., 2005), Abaqus solves thermal equation first and the 
resulting temperature solution is used in the subsequent mechanical analysis.  The local form of the 
transient energy equation is given in equation 1, (Lewis, 1996). 
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along with boundary conditions: 
 

Prescribed temperature on AT   
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Where is density, k is isotropic temperature dependant conductivity, H is temperature dependant 

enthalpy, which includes the latent heat of solidification.  is a fixed temperature at the boundary A

ρ
T̂ T,  q̂ is 

prescribed heat flux at the boundary Aq, h is film convection coefficient prescribed at the boundary Ah 
where is  the ambient temperature, and n is the unit normal vector of the surface of the domain. T∞



 
 

3. Mechanical Governing Equations 
 
Solidification involves small strain, so the assumption of small strain is adopted in this work. The thermal 
strains which dominate thermo-mechanical behavior during solidification are on the order of only a few 
percent, or cracks will form (Thomas, 1986). Several previous solidification models (Kristansson, 1984, 
Zhu, 1993, Li, 2004, Risso, 2006) confirm that the solidified metal part indeed undergoes only small 
deformation during initial solidification in the mold. The displacement spatial gradient  is 
small so and the linearized strain tensor is thus (Mase, 1999): 
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Then, the small strain formulation can be used, where Cauchy stress tensor is identified with the nominal 
stress tensor  , and bσ   is the body force density with respect to initial configuration. 
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The boundary conditions are: 
 

uˆ      on  A
 on  AΦ

=
⋅ =

u u
nσ Φ          (3a) 

 
where prescribed displacements  on boundary surface portion Aû u, and boundary surface tractions Φ  on 
portion define a quasi-static boundary value problem.  The rate representation of total strain in this 
elastic-viscoplastic model is given by: 
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where are the elastic, inelastic (plastic + creep), and thermal strain rate tensors respectively.  

Stress rate depends on elastic strain rate, and in this case of linear isotropic material and negligible large 
rotations, it is given by equation 5 in which “:” represents inner tensor product.  
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D  is the fourth order isotropic elasticity tensor given by equation 6. 
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Here are the shear modulus and bulk modulus respectively and are in general functions of 

temperature, while 
B, kµ

,I I  are fourth and second order identity tensors and “⊗ ” is the notation for outer 
tensor product.  
 



3.1 Inelastic Strain 
 
Inelastic strain includes both strain-rate independent plasticity and time dependant creep. Creep is 
significant at the high temperatures of the solidification processes and is indistinguishable from plastic 
strain (Li, 2004). The inelastic strain-rate is defined here with a unified formulation using a single internal 
variable (Anand, 1982, Lush 1989), equivalent inelastic strain ieε to characterize the microstructure.  For 

steel solidification considered here, the equivalent inelastic strain-rate ieε is a function of equivalent 

stressσ , temperature T, equivalent inelastic strain ieε , and steel grade defined by its carbon content %C. 
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  is a deviatoric stress tensor defined in equation 9. σ'
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The mild carbon steels treated in this work are assumed to harden isotropically, so the von Mises loading 
surface, associated plasticity, and normality hypothesis in the Prandtl-Reuss flow law is applied 
(Mendelson 1983): 
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3.2 Thermal Strain 
 
Thermal strains arise due to volume changes caused by both temperature differences and phase 
transformations, including solidification and solid-state phase changes between crystal structures, such as 
austenite and ferrite.  
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where  is temperature dependant coefficient of thermal expansion, and is the reference temperature 

and is Kronecker’s delta. 
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4. Local Time Integration of the Inelastic Constitutive Model implemented in 
UMAT 
 
Owing to the highly strain dependant inelastic responses, a robust integration scheme is required to solve 
this system over a generic time increment t∆ . The system of ordinary differential equations defined at 
each material point are converted into two “integrated” scalar equations and solved using special bounded 
Newton-Raphson method (Lush, 1989, Zhu, 1993, Koric, 2006). Details of this local bounded Newton 
Raphson scheme can be found at (Lush, 1989, Zhu, 1993, Koric, 2006) along with the derivation of the 
Jacobian consistent with this integration scheme.  



The solution obtained from this “local” integration step from all material (gauss) points is used to update 
the global finite element equilibrium equation and solved using the Abaqus nonlinear finite element 
procedure (Abaqus Inc, 2005).  

4.1. Treatment of Liquid/Mushy Zone 
 
The great variation in material properties between liquid, mush, and solid creates significant numerical 
challenge to accurate thermo-mechanical simulations.  In the current model the elements containing both 
liquid and solid are generally given no special treatment regarding either material properties or finite 
element assembly. The only difference is to choose an isotropic elastic-perfectly-plastic rate-independent 
constitutive model that enforces negligible liquid strength when the temperature is above the solidus 
temperature. This simple fixed-grid approach avoids difficulties of adaptive meshing or “giving birth” to 
solid elements. The yield stress is chosen small enough to effectively eliminate stresses 
in the liquid-mushy zones, but also large enough to avoid computational difficulties. These liquid/mushy 
elements are evaluated using the standard radial-return algorithm, which is a special form of backward-
Euler procedure (Crisfield, 1991, Zienkiewicz, 1991). 
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5. Numerical Validation  
 
The solidification stress model used in this work was validated by comparison with a semi-analytical 
solution of thermal stress in an unconstrained solidifying plate, derived by Weiner and Boley (Weiner, 
1963) and with a previous finite-element model, CON2D (Zhu, 1993, Li, 2004).  Taking advantage of the 
large length and width of the test-problem casting, a one-dimensional solution with the generalized plane 
strain condition in both the y and z directions can produce the complete 3-D stress and strain state. 
The domain adopted for this problem moves with the strand in a Langrangian frame of reference as shown 
in Fig. 1. The domain consists of a thin slice through the plate thickness using 2-D generalized plane strain 
elements (in the axial z direction). In addition, a second generalized plane strain condition was imposed in 
the y-direction (parallel to the surface) by coupling the displacements of all nodes along the bottom edge of 
the slice domain. 
The material in this problem has elastic-perfectly plastic constitutive behavior. The yield stress drops 
linearly with temperature from 20 MPa at 1000oC to zero at the solidus temperature 1494.4oC, which was 
approximated by =0.03 MPa at the solidus temperature.  A very narrow mushy region, 0.1Yσ

oC, is used to 
approximate the single melting temperature assumed by Weiner and Boley 

 
 

Figure 1.  Solidifying Slice 

 



Table 1.  Constants used in solidification test problem. 

 
Conductivity      [W/mK 33.0 
Specific Heat      [J/kg K] 661.0 
Elastic Modulus in Solid [GPa] 40.0 
Elastic Modulus in Liquid [GPa] 14.0 
Thermal Linear Expansion Coefficient [1/K] 0.00002 
Density [kg/m3 ] 7500. 
Poisson’s Ratio 0.3 
Liquidus Temperature [o C] 1494.45 
Fusion Temperature (analytical) [o C] 1494.4 
Solidus Temperature  [o C] 1494.35 
Initial Temperature [o C] 1495.0 
Latent Heat [J/kg K] 272000.0 
Reciprocal of Liquid viscosity [MPa-1sec-1] 1.5x108

Surface Film coefficient [W/m2K] 250,000 
 
Figures 2 and 3 show the temperature and the stress distribution across the solidifying shell at two different 
solidification times. The semi-analytical solutions were computed with MATLAB by C. Li et. al (Li, 2004).  
These figures also include the solution from an in-house code, CON2D (Zhu, 1993, Li, 2004) to this 
problem. Further comparisons of with CON2D for two-dimensional test problems also produced reasonable 
agreement.  More details about this model validation can be found elsewhere (Koric, 2006) including 
comparisons with other less-efficient integration methods and a convergence study.  
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Figure 2.  Temperature distribution along the solidifying slice. 
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Figure 3.  Y and Z Stress Distributions along the solidifying slice. 

 

6. Thermo-Mechanical Model of Thin Slab Casting 
 
Thin slab casting was first introduced in 1986 in Nucor Steel’s plant in Crawfordsville Indiana. This 
technology features casting of about 50-mm thick slabs, which are 1/3 thinner than convectional cold cast 
rolled slab. Thermo-mechanical modeling of thin slab casting has received much less attention than 
conventional thick casting. The main additional modeling complication comes from the computational 
difficulty faced when modeling transient geometry of the funnel shape as the strand domain travels in the 
mold. A. Cristallini et al. (Cristallini, 1999) developed a two-dimensional transient thermal and stress 
analysis assuming elastic-plastic behavior of shell to design new funnel geometry. Park et al. (Park, 2002) 
implemented a 2D generalized plain strain approach with elastic-viscoplastic constitutive model by 
imposing a severe taper in the funnel area to emulate the slope of the funnel that pushes the strand. While 
this approach was able to predict temperature and transverse stress results, the axial stresses in the casting 
direction, which likely are responsible for internal transverse cracks, can only be calculated properly with a 
3D model that has some thickness in the casting direction. A novel 3D thermo-mechanical analysis of a 
thin slab casting is performed with our Abaqus model with UMAT on the latest parallel computing 
platforms.  
 

6.1  Geometry and FE Model 
 
Fig. 4 shows a schematic of thin slab casting (Kowaski Steel, 1999). Aside from a thinner mold width than 
conventional thick caster, one additional significant difference is a funnel shape section across its central 
upper part. This design provides sufficient space for the introduction of a large size bifurcated submerged 
entry nozzle. The rest of the wide mold faces out of funnel region stays straight and parallel like any other 
rectangular mold. The funnel section narrows down gradually into a rectangular cross section which gives 
the final shape to the slab casts.  



 
Figure 4.  3D Schematic of thin slab casting. 

 

Fig. 5 has geometry of a thin mold used in this work.  Generally, the shape of funnel can be characterized 
by the width and depth of funnel. The total width of the funnel is 750 mm consisting of two bends. The 
inside concave funnel bend is 400 mm wide where there is an inflection point that changes funnel curvature 
from concave to convex., the rest of the funnel is a convex outside bend. At the lower part of mold the wide 
faces at the funnel region becomes almost parallel, ie. the funnel depth tapers away linearly from 40 mm at 
the top of the mold to 6 mm at 900 mm down from the mold top. The meniscus plane is 100 mm lower than 
the mold top so that working mold length is 1100 mm. The slab thickness varies for the center of the funnel 
from 170 mm at mold top to 108 mm at mold exit, for the concave/convex inflection point from 148 mm at 
mold top to 93.1 at mold exit, and stays the same at 90 mm for the straight part of the mold. 

 
Figure 5.  Geometry of a thin slab casting mold. 



One quarter of the mold and the strand in it is modeled. The liquid domain is highly reduced to save cpu 
time and to reduce possible convergence problems in the volatile liquid/mushy region. Unlike any other 2D 
models, this FE model has a thickness of 100 mm in the casting direction; see Fig 6 of the 3D FE domain 
viewed from the bottom of the mold.  The usual symmetry BC-s are enforced on the central planes normal 
to the wide and narrow faces. In addition, the symmetry BC in the axial direction z is enforced on the 
bottom surfaces of the mold and strand.  
 

 
Figure 6.  3D Model and BC-s. 

 
Due to the axial movement of 3D domain in Lagrangian frame of reference, the different material points 
and nodes in axial direction have different local times. Equation 12 is used to calculate the local time that a 
material point spends in the mold. 
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where  is the domain thickness of 0.1 m in the casting direction, is the casting velocity of 3.6 m/min, 
Z is the axial coordinate of a material point in the local coordinate system sitting on the top plane and 
traveling with the domain, and is the time of the reference plane which is chosen to be the bottom plane 
and is the time that Abaqus passes to UMAT.  
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The strand material is 0.21%C steel with temperature dependant properties which includes: conductivity, 
specific heat, enthalpy, elastic modulus, and thermal expansion coefficient (Li, 2004, Koric, 2006).  The 
specific form of the inelastic law form from equation 7 is Kozlowski III law (Kozlowski, 1992) for 
austenite steels. The transient heat transfer analysis is first run for the strand domain to calculate its spatial 
and temporal temperature fields. The thermal boundary condition at the shell surface is modeled by use of a 
heat flux which is obtained from the plant measurements down the mold (Park, 2002). This flux data is 
curve fitted and prescribed as a function of the local time bellow meniscus in Fig. 7. The previous work (Li, 
2004, Koric, 2007) revealed the formation of air gaps in the mold/shell interface in the corner region due to 
2D heat flow corner effects. Therefore in order to account for the expected gap formation and thus avoid 
corner overcooling, the heat flux profile is reduced to 60% of its nominal value. This reduction is applied 
linearly starting 20mm from the corner on both wide and narrow strand surfaces. Fig. 7 also shows this 
reduced flux curve imposed at the corner. 



 
Figure 7.  Imposed heat flux BC 

 
The result temperature file is used for a subsequent stress analysis. The mechanical contact between 3D 
surfaces of the shell and the mold wall is modeled with Abaqus softened contact capabilities (Abaqus Inc., 
2005). Ferrostatic pressure is modeled by means of DLOAD subroutine linearly increasing with respect to 
the local time for each material point on the shell surface pulled towards the mold wall. The funnel taper is 
modeled with the imposed displacement history to the funnel mold contact nodes by means of DISP 
subroutine. The total displacement is calculated from the difference between the funnel mold surface 
profiles at the top and the bottom of the mold for a few points along the funnel mold surface. This 
displacement data is curve fitted with the third order polynomial to yield the x directional (transverse) 
dependence. Finally this displacement function is linearly scaled with respect to the local total time bellow 
the meniscus. 
The domain is meshed with 8-node brick elements (Abaqus Inc., 2005) with the total number of degrees of 
freedom close to 500,000. Abaqus 6.5 was run in parallel using the SMP direct solver with 4 cpus on the 
NCSA’s AMD 64 cluster.  
 
6.2 Results  
 
Fig. 8 has a detail corner bottom shell surface distortion in the mold with the corner gap formed at 12 sec 
with temperature contour imposed.  Since this model does not have mold taper modeled, the real shell 
would not probably form such a big gap, if the taper of the narrow face was put into the simulation.  
Temperature contour is given in Fig. 9 at 19 sec., ie. when the bottom domain is exiting mold. Parallel 
isotherms normal to the casting direction confirm validity of the assumption used in all 2D cases that heat 
conduction in casting direction is negligible. Complicated geometry of the funnel region does not seem to 
produce any unexpected temperature results. Most of the shell surface is still cooling uniformly with 
respect to the local time it spends in the mold except in the corner and a small spot where funnel turns into 
straight part. Even though there is a drop of heat extraction from the shell in the corner due to the imposed 
flux drop, the immediate corner area still gets moderately cooled due to the 2D heat flow corner effect 
while the rest of the corner flux drop area stay warmest in the domain with as much as 120 C higher 
temperature than the rest of the domain and immediate corner.  This is quantitatively very similar to the 
temperature corner profile from the previus 2D coupled simulations (Li, 2004, Koric, 2007).   
 
 



 
 
Figure 8.  Detail corner bottom shell surface distortion with temperature contour at 12 sec.  

 
 

 
 

Figure 9.  Temperature contour when domain bottom is 19 sec. below meniscus. 

 
There are two major contributions to the generation of stress in this model. Besides usual thermo-visco-
plastic stresses coming from solidification due to the uneven cooling through shell thickness, there is a 
strong pure mechanical component coming from the funnel geometry pushing and bending solidified shell. 
Often mechanical component is dominant in funnel region and stress sign is opposite of expected 
compression on shell surface and subsurface tension common for pure solidification of a straight shell.  
Most of the wide face, and especially in the funnel region, is in the state of tensile stress on the surface 
early as given in Fig. 10 depicting transverse stress contour xσ  at 5 sec. This can be explained by the 
significant deformation of the shell as it gets pushed by the funnel and straightened in the funnel region 
increasing its length. The shell transverse elongation is even larger than its corresponding shrinkage due to 



the cooling, and the tension occurs on the shell surface. This is opposite of usual compression on the shell 
surface for the parallel molds without funnel.  

 
Figure 10.  Transverse stress contour when domain bottom is 5 sec. below meniscus.  

 
At later time of 12 sec. situation changes and most of wide face bottom edge is in compression except the 
funnel outer bend region that stays in the tensile state. Between 13.5 and 17 sec. most of the funnel shell 
surface goes into another period of tension, which is even stronger than at early times. That is the time 
when the shell in the funnel goes through the funnel mold wall transition region from the tapered to the 
straight.  Finally, at the mold exit at 19 sec surface compression dominates everywhere again except in the 
small area around the center of the funnel where some residual tensile surface stress is still present. 
Generally subsurface stress lines are showing usual tensile stress close to solidification front when 
compression is on the surface, but opposite is also true for the most of the surface in tension. 
Axial stress  distribution and history are quantitatively similar to the transverse stresses and 
characterized again by the two stress reversals. At 5 sec high tensile stress areas are recorded close to 
symmetry planes, while in the corner area both tensile and compressive stresses are present next to each 
other due to the strong thermal strains coming from temperature corner variations. Most of shell surface is 
in compression due to its axial shrinkage at 12 sec except a tiny tensile strip at the corner edge. At the time 
of 15.8 sec. surface tension is present in most of the funnel region which is left from the axial unbending 
that shell undergoes after transition from tapered to straight part of the funnel mold wall, as given in Fig. 
11. Finally at the mold exit, surface compression dominates again. 

zσ

 

 
Figure 11.   Axial stress contour when domain bottom is 15.8 sec. below meniscus. 



 

Transverse and axial stress histories are given for the two interesting points on the bottom surface edge. 
Fig. 12 has stress histories for a center funnel point, and Fig. 13 has stress histories for a point 0.58 m from 
a center in a straight part of wide face. The stress histories for the funnel point is nicely depicting the two 
periods of stress reversals, while the straight part of funnel mostly behaves in an expected surface 
compression fashion observed from the validation model from the chapter 5. 

 

Figure 12.  Stress histories for a center bottom surface wf point.  

 
Figure 13.  Stress histories for a bottom surface wf point, at the straight part   



7. Conclusions 
 
3D thermo-mechanical behavior of the strand in a thin funnel mold has been analyzed. The transient heat 
transfer analysis with realistic properties and heat flux boundary conditions was run first, followed by the 
mechanical analysis with 3D softened mechanical contact between the shell and the mold wall. This 
simulation provides the following insights into the continuous casting process for funnel thin slabs: 
• This model indicates a significant interfacial gap develops at and near the corner, on the narrow face, 

owing to the lack of mold taper. Realistic mold taper data is necessary to be included in future models 
to compensate for the large gap formation.   

• Large gradients of temperature are recorded between the corner tip and wider corner area. This is 
causing uneven shell development in the corner area, similar to beam blank casting (Koric, 2007), 
making the corner area prone to shell thinning, longitudinal cracks and other problems.  

• Negligible temperature gradients are observed in the casting direction, justifying the assumption used 
in all 2D models that the heat conduction in axial (casting) direction can be neglected due to the large 
Peclet number. 

• The strand surface is generally in compression, similar to the analytical solution.  Two periods of stress 
reversals, characterized by the surface going into tension (and the subsurface into compression), are 
revealed for both transverse and axial shell stresses in the funnel area. The transverse stress reversals 
are consistent with the findings of Park et. al. (Park, 2002).  

• The axial stress results are novel and can be used to predict internal transverse cracks.  The results 
suggest that the sharp end of the funnel is responsible for the shell lifting off the mold wall, potentially 
leading to air gap formation, and cracking problems, in addition to the tensile stresses.  Thus, the 
model suggests that moothing the transition from the funnel to the lower mold should alleviate this.   

• Even though this pioneer attempt to model 3D solidification in a complex geometry environment of a 
thin slab continuous mold with funnel turned out to be a serious computational task, it clearly shows 
that the model developed in UMAT in previous work (Koric, 2006) is efficient enough to perform it 
successfully with Abaqus on the latest computational platforms. 
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